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ABSTRACT
This paper studies the problem of selecting relevant features in clustering problems, out of a
data-set in which many features are useless, or masking. The data-set comprises a set U of units,
a set V of features, a set R of (tentative) cluster centres and distances dijk for every i ∈ U, k ∈ R,
j ∈ V . The feature selection problem consists of finding a subset of features Q ⊆ V such that the
total sum of the distances from the units to the closest centre is minimised. This is a combinatorial
optimisation problem that we show to be NP-complete, andwe propose twomixed integer linear
programming formulations to calculate the solution. Some computational experiments show that
if clusters are well separated and the relevant features are easy to detect, then both formulations
can solve problems with many integer variables. Conversely, if clusters overlap and relevant
features are ambiguous, then even small problems are unsolved. To overcome this difficulty, we
propose twoheuristicmethods to find that,most of the time, one of them, called q-vars, calculates
the optimal solution quickly. Then, the q-vars heuristic is combined with the k-means algorithm
to cluster some simulated data. We conclude that this approach outperforms other methods for
clustering with variable selection that were proposed in the literature.
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1. Introduction

Clustering is a useful and important unsupervised
learning technique widely studied in the literature. The
goal of clustering is to group similar units (or objects)
into one cluster, while partitioning dissimilar units into
different clusters. Clustering becomes difficult if data
contain features (also referred to as variables) with no
relevant information. When those features are not de-
tected, the calculation of the dissimilarity between units
is biased by their presence, resulting in inconsistent
clusters (Fowlkes, Gnanadesikan, & Kettering, 1988).
The problem becomes more and more relevant as the
number of features in a database increases, as frequently
occurs nowadays with data containing hundreds and
even thousands of covariates (see Guyon & Elisseef,
2003). Therefore, researchers from different disciplines
need tools to discard the noising or masking features
that are useless to recognise the true clusters. Previous
literature has focused on three methods to select or
reject variables. The first is themost simple and consists
of calculating peculiar indices, one for each variable, to
distinguish those features that contain recognisable pat-
terns. The second approach is the most elaborate and
consists of optimising the maximum likelihood func-
tion, assuming that data are generated by multivariate
distributions. The third approach, whose difficulty is
intermediate between the previous ones, is to solve an
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optimisation model whose structure is easier than the
maximum likelihood.

The first approach, developing “clusterability” in-
dices, has been suggested in Andrews and McNicholas
(2014), Carmone, Kara, and Maxwell (1999), Morlini
and Zani (2013), and Steinley and Brusco (2008b). In
Carmone et al. (1999), an index called Total Pairwise
Rand Index (TOPRI) has been used to select those
features that form the best clusters. Features are selected
using a constructive procedure that selects features one
at a time until a stop criterion is met. In Steinley and
Brusco (2008b) an index called clusterability index is
defined and used within a multi-step procedure. This
procedure is composed of variable preprocessing, data
standardisation and variable selection through optimi-
sation. In Andrews and McNicholas (2014), the role of
the index is played by an inequality that balances corre-
lation with variability reduction, used for preliminary
data screening. In Morlini and Zani (2013), another
index is used to compare the outcome of hierarchical
clusterings applied to data subsets. The advantage of all
these methods is that the calculation of an index is usu-
ally a fast task. However, the “greedy” constructive way
in which features are selected is clearly sub-optimal.

The second approach, optimising the data likelihood
function, assumes that data are described by multivari-
ate distribution functions. This distribution function
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is a mixture of components, that is, other distributions,
each one describing one cluster (see Fraley & Raftery,
2002). The parameters of the mixture distribution are
estimated through the maximisation of the likelihood
function, so that all means, variances and covariances
have to be calculated (with cluster memberships ex-
pressed as probabilities). When feature selection is in-
troduced to themodel (see Raftery&Dean, 2006),max-
imum likelihood optimisationmust be repeated several
times, which increases sharply computational times.
Similar approaches appear in Law, Figuereido, and Jain
(2004) andPan andShen (2007),where a penalty term is
added to themaximum likelihood estimation to enforce
variables’ rejection. The penalisation is justified in the
framework of minimum message length (Law et al.,
2004), or objective function regularisation (Pan&Shen,
2007). Another approach that simultaneously selects
variables and estimates cluster parameters is proposed
in Tadesse, Sha, & Vannucci (2005), where Bayesian a-
priori distributions are introduced and the variable se-
lection problem is solved through probabilistic search.

These two strategies suffer fromopposite drawbacks:
Resorting to just one index is too simple, whereasmaxi-
mum likelihood estimation can be too difficult to solve.
A third more convenient approach is to retain the opti-
misation structure of the variable selection problem by
replacing the likelihood function with an easier func-
tion. For example, in Benati and García (2014), Brusco
(2004), Friedman and Meulman (2004) and Witten
and Tibshirani (2010), the easier objective function is
the minimisation of distances (or sum of squares), as
occurs in the k-means model (MacQueen, 1967). Par-
ticularly, in Friedman and Meulman (2004) a penalty
term is added to the k-means objective function with
the purpose of penalising redundant variables, while in
Witten and Tibshirani (2010) a new constraint is intro-
duced to thek-meansoptimisationmodelwith the same
goal. When solved, the two approaches weigh variables
according to their importance, but this methodology
avoids using the more natural 0–1 combinatorial de-
cisions for selecting or rejecting features. Conversely,
0–1 decisions are used in Brusco (2004) and Benati
and García (2014). In Brusco (2004) the k-means ob-
jective function depends on variable selection solved
with a greedy heuristic algorithm. In Benati and García
(2014), optimal clustering and variable selection are
calculated with a mixed integer linear programming
(MILP) problem using the p-median as the objective
function. This approach is promising since very fast
exact methods have been recently proposed to solve
the p-median problem (see Avella, Boccia, Salerno, &
Vasilyev, 2012; García, Labbé, & Marín, 2011).

In this paper, we show how to formulate the optimal
feature selection for clustering as an integer program-
ming problem. It will be proved that the problem isNP-
complete. In addition, we experimented two different

formulations that were solved using CPLEX to deter-
mine the practical problem complexity. The experi-
ments showed that computational times depend much
on the data: If the relevant variables are clearly recognis-
able and clusters arewell separated, then computational
times are negligible even for large size instances (more
than 1000 features). Conversely, times increase fast if
variables are hard to detect and clusters overlap, to the
point that instances with just 40 features are not solved
within a reasonable time. Therefore, we propose two
heuristic algorithms, derived from the integer linear
formulation, in order to apply our methodology to all
kind of data, both easy and difficult. The algorithms
take advantage from the fact that the optimal relevant
feature selection and unit allocation to clusters can
be solved separately, being both problems solvable in
polynomial time. One of the two, called q-vars for its
similarity with the k-means, is the one that performs
better.

The second part of the paper considers the appli-
cation of the q-vars algorithm to clustering, follow-
ing the same procedure tested in Brusco (2004). We
simulate some data-sets in which statistic units are di-
vided into clusters and some variables are masking.
Our purpose is to discover the hidden clusters after
having discarded the masking variables. The clustering
algorithm is composed of three steps. In the first step,
we apply a clustering algorithm to the whole data-
set to determine potential cluster centres, necessary as
input of the q-vars algorithm. Next, in the second step,
the q-vars algorithm selects the relevant features and
it is compared to other variable selection algorithms
proposed in the literature. Finally, in the third step,
the clustering algorithm is applied again to the data-set
now composed of the relevant variables only. As will be
seen, clustering with the q-vars algorithm is the most
accurate procedure, and, when pairedwith the k-means
clustering, the computational times are very fast.

2. Problem formulation

Let a clustering problem be defined on the set U =
{1, . . . , n} of objects (or units), for which the variables
(or features) V = {1, . . . , m} are recorded. Some of
the variables of V are relevant, in the sense that objects
belonging to different groups take different values on
these variables, but some other variables are mask-
ing, which means that their values are not relevant
for group membership. Suppose that cluster centres
R = {1, . . . , r} have been given by some preliminary
analysis, the search for the optimal clustering can be
improved by discarding the masking variables: What is
the set of variables Q ⊆ V that best discriminates the
units group membership for the given set R of cluster
centres? When the problem is solved,Q is the set of the
relevant variables and V \Q is the set of the masking
variables that are discarded from the data-set.
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We will use the following notation. For every i ∈ U ,
k ∈ R, j ∈ V , let dijk be the dissimilarity (or distance)
between i and k, measured through variable j. The
dissimilarity between i and k is dik(V) = ∑

j∈V dijk.
If only a subset Q ⊆ V of variables is selected, then the
dissimilarity between unit i and centre k is dik(Q) =∑

j∈Q dijk.
The allocation (or membership) of the objects of U

to one of the centres of R is determined by the shortest
distance: For a given Q ⊂ V , a unit i is assigned to
the centre k(i) such that di, k(i)(Q) = min{dik(Q) |
k = 1, . . . , r}. Let D(Q) = ∑

i di, k(i)(Q) be the sum
of all distances between units and centres. To select the
best variables for clustering, the researcher finds the
set Q for which the index D(Q) is minimised, with the
additional constraint |Q| = q (q is a parameter that
is exogenously fixed). This new combinatorial optimi-
sation problem will be called the q-variable selection
problem and its properties are discussed in the following
sections. To visualise the relevant decisions, observe
that the data can be represented as a bipartite graph
G = (U , R, E) in which objects i ∈ U and centres
k ∈ R are regarded as nodes, while arcs represent
features. More formally, there are m (multiple) arcs
between every node pair i and k, where each arc eijk ∈ E
corresponds to feature j = 1, . . . , m, with cost dijk.

Minimising the objective functionD(Q) for variable
selectionhas beenproposed inBenati andGarcía (2014)
and Friedman and Meulman (2004). It is worth noting
that the model we are discussing here assumes that
centres R are given without any assumption about their
quality, that is, it may happen that the data do not have
any cluster structure at all, or that different clusters
can be detected with different sets of variables. In this
sense, the choice of R can be made using different
approaches. In Benati and García (2014) a full-fledged
model in which decisions are the relevant variables Q
and the optimal centres R has been formulated, but it
was reported to be very difficult to solve to optimality:
For a fixed Q, one has to solve the p-median problem,
which is itself an NP-complete problem. The q-variable
selection problem developed here can be considered a
simplification of that model because the centres R are
now fixed. Unfortunately, the problem remains NP-
complete even in this case, as we prove later in Theorem
1. First, the problem must be formulated as a decision
problem:

[q-variable selection]: Given a distance matrix D ∈
R
n×m×r and a non-negative real number α, is there

any variable selection Q, such that the resulting cluster
assignment has a value D(Q) = g∗ ≤ α?

The complexity proof uses the following problem:
Consider a bipartite graph G = (U , R, E) in which
i ∈ U , |U | = n, and k ∈ R, |R| = m, are the sets
of nodes, and there is an arc eik with cost cik for all
i ∈ U , k ∈ R. For a setP ⊆ R, |P| = p, called p-median,

the distance from i ∈ U to P is ci, P = min{cik | k ∈ P},
the value of the objective function is F(P) = ∑

i∈U ci,P .
The p-median problem is: min P⊆R

|P|=p
F(P). This problem

is known to be NP-complete (Kariv & Hakimi, 1979):
[p-median]: Given a cost matrix C ∈ R

n×m, and a
non-negative real number α, is there any p-median of
value F(P) = v∗ ≤ α?
Theorem 1: The q-variable selection problem is NP
-complete.
Proof: Checking whether a given solution Q is such
that the objective function has value g∗ ≤ α can be
done in polynomial time. Therefore the problem is in
NP. To see NP-completeness, we will show that the p-
median problem can be reduced to q-variable selection
with p = q.

Given a p-median problem with cost matrix C ∈
R
n×m, then the following q-variable selection problem

with cost matrix D ∈ R
n×m×m is defined on the auxil-

iary bipartite graph G = (U , R, E), in which i ∈ U =
{1, . . . , n} stands for units and k ∈ R = {1, . . . , m}
stands for cluster centres. For every i ∈ U , k ∈ R
there are m arcs eijk ∈ E that are indexed by j ∈ V =
{1, . . . , m} andwhoseweights aredijk = cik if j = k and
dijk = M otherwise (with M a suitable large number).
The structure of the three-dimensional matrix D is as
follows (where dk is the distance matrix from i ∈ U ,
k ∈ R):

d1︸ ︷︷ ︸ d2︸ ︷︷ ︸ · · · dm︸ ︷︷ ︸
1 c11 M . . . M M c12 . . . M . . . M . . . M c1m
2 c21 M . . . M M c22 . . . M . . . M . . . M c2m
...

...
...

...
...

...
...

...
...

...
...

...
...

...

n cn1 M . . . M M cn2 . . . M . . . M . . . M cnm

Now consider the problem of q-variable selection in
this graphwith q = p.Whenever a setQ ⊆ V , |Q| = p,
is selected, distances from i ∈ U to k ∈ R can be
calculated and each unit must be assigned to the closest
cluster centre. The distance between unit i ∈ U and
a cluster centre k ∈ R according to the selected vari-
ables in Q is dik = dijj + (p − 1)M = cik + (p − 1)
M if j = k ∈ Q, dij = pM otherwise. Therefore,
when solving theq-variable selectionproblem, it cannot
happen that a unit i is assigned to a cluster centre k such
that the corresponding variable index k /∈ Q because
cik+(p−1)M < pM. So, i is assigned to that k for which
dik = min{diw | w ∈ Q} = min{ciw + (p − 1)M | w ∈
Q} = min{ciw |w ∈ Q}+ (p−1)M . Thus, the objective
function value for the variable selection problem is∑

i min{ciw | w ∈ Q} + n(p − 1)M. But the objective
function of the p-median problem with cost matrix C
and set Q of medians is

∑
i min{ciw | w ∈ Q}. Now,

if q = p, then the p-median problem has a solution
of value F(Q) = v∗ < α if and only if the q-variable
selection problem on the auxiliary graph has a solution
of value D(Q) = g∗ < α + n(p − 1)M. �
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2.1. Variable selection and variability reduction

The index D(Q) is closely related to the representa-
tion of the variability within clusters: If variables are
standardised using the z-score, dissimilarities dijk are
squared distances, and centroids R are calculated as
cluster means, then minimising the objective function
D(Q) is equivalent to the minimisation of the within-
group variability, which is the same than maximising
variability between groups. The result is mentioned
in Andrews and McNicholas (2014) and Steinley and
Brusco (2008a), but no formal proof is provided.

Let sij be the value of feature j, j = 1, . . . , m,
recorded forunit i, i = 1, . . . , n, and letμj = 1

n
∑n

i=1 sij
be the average of j. The total variability brought by
feature j is expressed by the sum of squares:

TSSj =
n∑

i=1

(sij − μj)
2.

Let TSS(Q) = ∑
j∈Q TSSj be the total variability that is

covered by a feature subset Q ⊆ V .
Lemma 1: TSS(Q) is constant for all Q ⊆ V such that
|Q| = q if, and only if, every feature j has the same
variance σ 2.
Proof: If all features have the same variance σ 2

j = σ 2

for all j ∈ V , then TSSj = ∑n
i=1 (sij − μj)

2 = nσ 2.
Therefore,

∑
j∈Q TSSj = q n σ 2.

Consider now the case in which units are partitioned
into clusters Gk, k = 1, . . . , r, and feature j for each
cluster centre is represented by its mean, that is, rkj =
1

|Gk|
∑

i∈Gk
sij for j = 1, . . . , m; k = 1, . . . , r. Let k(i)

be the cluster to which unit i is assigned. For the given
partition, the total sum of squares is:

n∑
i=1

(sij − μj)
2 =

n∑
i=1

(sij − rk(i), j)2 +
n∑

i=1

(rk(i), j − μj)
2

+ 2
n∑

i=1

(sij − rk(i), j)(rk(i), j − μj).

After some arithmetic manipulation, it can be seen that
the term

∑n
i=1 (sij−rk(i), j)(rk(i), j−μj) is null. Therefore

the total sum of squares can be decomposed into two
terms:

WSSj =
n∑

i=1

(sij − rk(i), j)2,

which is the variability within clusters, and a second
term:

CSSj =
n∑

i=1

(rk(i), j − μj)
2,

which represents the variability between clusters. If the
researcher is free to choose a set Q ⊆ V of variables,
then the variability decomposition depends on the setQ
according to the formula:

∑
j∈Q

TSSj =
∑
j∈Q

WSSj +
∑
j∈Q

CSSj. (1)

As can be seen, calculatingminQ⊆V
∑

j∈Q WSSj withQ
a set of fixed size q does not correspond, in general, to
calculatingmaxQ⊆V

∑
j∈Q CSSj, as the term

∑
j∈Q TSSj

depends on Q. The two problems are equivalent only
in the special case that variables V are standardised so
that all have the same variance. �
Theorem 2: Assume that variablesV aremeasured for
units U and that all the variables have the same variance
σ 2
j = σ 2 for all j ∈ V. Let the units be partitioned

into clusters Gk, k = 1, . . . , r, and let R be the set
of cluster centres calculated as the means of the clus-
ters. Solve the q-variable selection problem with dijk =
(sij − rk(i), j)2. If an optimal solution Q∗ is obtained,
such that

∑
j∈Q∗ WSSj = minQ⊆V

|Q|=q

∑
j∈Q WSSj, then∑

j∈Q∗ CSSj = maxQ⊆V
|Q|=q

∑
j∈Q CSSj.

Proof: It has alreadybeen shown in theproof of Lemma
1 that

∑
j∈Q TSSj = qnσ 2. Since this expression is

constant, from Equation (1) we have that
∑

j∈Q CSSj =
qnσ 2 − ∑

j∈Q WSSj, therefore minimising the latter is
the same than maximising the former. �

2.2. Linear programming formulations for the
q-variable selection problem

In this section, we propose two integer linear program-
ming formulations. The firstmodel represents the natu-
ral implementation of the q-variable selection problem
and it has decision variables for both unit-to-cluster
assignments and variable selection. The formulation is
flexible enough to allow for the insertion of additional
statistical constraints like outlier detection, conflicting
variables, etc. The model requires a quadratic number
of binary variables, which correspond to the assign-
ments. Then a second model is proposed in which
assignment variables are replaced with radius variables,
which reduces the number of binary variables from
quadratic to linear. It is worth noting that this radius re-
formulationwas already implicit in a selection/clustering
model discussed in Benati and García (2014) where
the decisions were both variable selection and centre
location. It is included here for the sake of complete-
ness to show the integer linear model with the best
computational times (even for the restricted case with
fixed centres).

The decision variables of the first model are:

• zj, j = 1, . . . , m, represents whether feature j is
chosen or not, that is, zj = 1 if, and only if, j ∈ Q,
zj = 0 otherwise;

• xik, i ∈ U , k ∈ R are the (global) assignment
variables of unit i to cluster centre k, that is,xik = 1
if, and only if, unit i is assigned to cluster k, xik = 0
otherwise;



JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY 5

• wijk, i ∈ U , j ∈ V , k ∈ R, are the auxiliary
(local) assignment variables of unit i to cluster
centre k using feature j, that is, wijk = 1 if, and
only if, unit i is assigned to cluster centre k and
feature j is chosen, wijk = 0 otherwise.

The problem formulation is:

P1 : f (z, x, w) = min
n∑

i=1

m∑
j=1

r∑
k=1

dijkwijk (2)

s.t.
m∑
j=1

wijk = qxik ∀i, ∀k, (3)

r∑
k=1

xik = 1 ∀ i, (4)

r∑
k=1

wijk ≤ zj ∀ i, ∀j, (5)

m∑
j=1

zj = q, (6)

wijk ∈ {0, 1} ∀ i, ∀j, (7)
xij ∈ {0, 1} ∀ i, ∀j, (8)
zj ∈ {0, 1} ∀j. (9)

Constraint (3) states that no local assignment (i, k) that
uses variable j is feasible unless a global assignment
(i, k) is established.Moreover, the total number of local
assignments (i, k) is exactly q. Constraint (4) estab-
lishes that every unit i must be assigned to exactly one
cluster k. Constraint (5) imposes that a local assignment
(i, k) that uses variable j is feasible only if variable j
has been selected. Constraint (6) sets the number of
variables to q. Constraint (8) imposes binary values to
the x assignment variables, while constraints (7) and
(9)can be weakened to require that the variables are
continuous (see Theorem 3).

One of the advantages of formulating the problem
as an MILP model is that it can handle additional side
constraints that the researcher may need to impose. In
the following some examples are given, regarding:

• Constraining total variability;
• Restricting covariances;
• Balancing clusters cardinality;
• Discarding outliers.

As shown in Theorem 2, the dual relation between
variability within clusters and variability between clus-
ters holds only under restricted conditions, that is, data
must have equal variances. For the cases in which vari-
ances are not equal, minimising

∑
k∈Q WSSk may re-

sult in selecting variables for which TSSk is small as
well. Therefore researchers may require to balance two
objectives: on the one hand minimising

∑
k∈Q WSSk,

on the other hand maximising
∑

k∈Q CSSk. In Steinley
and Brusco (2008a) the two objectives are combined

through their ratio, but, as it is common in bi-objective
decision making, the ratio can be simplified imposing
a bound on

∑
k∈Q CSSk. Let K be a parameter that is

chosen by the researcher. Then the following constraint
can be added to P1:

m∑
k=1

CSSkzk ≥ K . (10)

By varying K researchers can observe a whole range of
solutions fromwhich to single out the best one for their
purposes.

Sometimes researchers want to select variables that
are not correlated (see Andrews & McNicholas, 2014;
Fraiman, Justel, & Svarc, 2008). For example, in An-
drews and McNicholas (2014) variables are discarded
using the following rule. If ρij is the correlation between
variables i and j, then check if:

|ρij| ≤ 1 − (min{WSSi, WSSj})p (11)

with p = 1, 2, . . . , 5. If the inequality is false, then
impose that only one of the variables i and j can be
selected. This procedure can be modelled with the fol-
lowing constraints. First, inequalities (11) are checked
and then, for every incompatible pair (i , j), the follow-
ing constraint is added to P1:

zi + zj ≤ 1. (12)

Some other applications require that clusters are bal-
anced. For example, the objective function in Friedman
and Meulman (2004) encourages clusters of similar or
equal size. This request can be formulated by allowing
cluster cardinality between a given range, let us say
between l and u. Then, for all j, the following constraint
is added to P1:

l ≤
∑
i∈U

xij ≤ u. (13)

Sometimes researchers want to circumvent the effects
of outliers, for example, using the so-called trimmed k-
means (García-Escudero, Gordaliza, & Matrán 2003).
The trimmed k-means algorithm is like the standard
k-means, but a percentage α of the farthest statistic
units is discarded from the computation of the means.
Even in this application, it can be required that variable
selection is not affected by outliers, trimming the α

percent of the farthest units. This can be done by adding
the following constraint to P1:

∑
i∈U

∑
j∈R

xij = 	n(1 − α)
 (14)

and turning constraint (4) into an inequality. Alterna-
tively, outliers can be discarded if their distance to R
exceeds a given threshold D.
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Other constraints that can be imposed to clustering
are discussed in Caballero et al. (2011). All the con-
straints proposed here are linear and can be added to
P1 without increasing its theoretical difficulty. There-
fore, it is likely that the algorithms that are proposed
for P1 can be straightforwardly extended to problems
involving these additional constraints.

The formulation P1 of the q-variable selection prob-
lem requires an MILP model with a quadratic number
of binary variables, which are the (i, j) assignments.
This seems somewhat unnecessary as the natural de-
cisions of the problem are the variables to select. It is
worth exploring the possibility of an alternative formu-
lation that has fewer binary variables.Wewill show that
this can be done using the so-called radius formulation.
The radius formulation is a technique that writes the
objective function as a telescopic sum of terms. Since
manyof these terms are redundantwhen calculating the
objective function, radius formulations usually contain
fewer variables than the original problem. As a con-
sequence, the problem is (usually) solved faster. The
methodology was suggested long ago in Cornuejols,
Nemhauser, and Wolsey (1980), but only recently has
been widely applied (see AlBdaiwi, Ghosh, & Golden-
gorin, 2011; Avella, Sassano, & Vasil’ev, 2007; Benati &
García, 2014; Elloumi, 2010; Elloumi, Labbé, & Pochet,
2004; García et al., 2011; García, Landete, & Marín,
2012; Marín, Nickel, Puerto, & Velten, 2009; Puerto,
Ramos, & Rodríguez-Chía, 2013). The methodology is
connected to pseudo-Boolean representation and data
aggregation for the p-median problem (see AlBdaiwi et
al., 2011; Church, 2003; Church, 2008).

The radius formulation replaces assignment vari-
ables wijk with radius variables hijt . Their definition
requires the following steps. Consider any unit i and
any variable j:

• Step 1:Removemultiplicities from {dij1, dij2, . . . ,
dijr} and sort the values in increasing order:

Dij1 < Dij2 < · · · < Dij, g(i, j),

where g(i, j) is the number of different values that
dijk assumes. In addition, define Di0 = 0. Note
that if there is some null dijk, thenDij1 = Dij0 = 0,
but this notation allowsus towrite always the same
model, no matter whether Dij1 is zero or not.

• Step 2: Define binary variables hijt as follows:

hijt =

⎧⎪⎪⎨
⎪⎪⎩

1, if variable j is selected and if unit i
is allocated to a centre k
such that dijk ≥ Dijt;

0, otherwise.

Consider the example shown in Figure 1: i ∈ U , {u, v,
o, l} ∈ R, j ∈ V . Distances are diju = dijv = Dij1,
because u and v are on the same circumference, and

Figure 1. Radius description of equidistant points.

dijl = dijo = Dij2, for the same reason. Then binary
variables are hij1 and hij2. If unit i is assigned to cluster
centre u, then hij1 = 1 and hij2 = 0. If unit i is assigned
to cluster l, then hij1 = 1 and hij2 = 1.

Radius variables can decrease the problem size: For
given i ∈ U , j ∈ V and constant c ∈ R, tiers are defined
as sets of archetypes at the same distance: Tij

c = {k ∈
R | dijk = c}. In Step 1, if two archetypes k, z ∈ Tij

c
for some c, then there is only one index u such that
Diju = dijk = dijz . Therefore, if there are many equal
distances, as occurs when variables are ordinal, then the
model reduction can be substantial.

For a pair i ∈ U , j ∈ V , the corresponding term of
the objective function must be rewritten in telescopic
form:

g(i, j)∑
t=1

(Dijt − Dij, t−1)hijt =
r∑

k=1

dijkwijk

and the overall problem is:

P2 : min
n∑

i=1

m∑
j=1

g(i,j)∑
t=1

(Dijt − Dij, t−1)hijt (15)

s.t.
r∑

k=1

xik = 1 ∀ i, (16)

m∑
j=1

zj = q, (17)
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hijt +
∑

{k | dijk<Dijt }
xik ≥ zj, ∀ i, ∀j, ∀t ≥ 1,

(18)
hijt ≥ 0 ∀ i, ∀j, ∀t, (19)
xik ≥ 0 ∀ i, ∀k, (20)
zj ∈ {0, 1} ∀k. (21)

Constraint (18) ensures that a radius variable hijt takes
value one if zj = 1 and xik = 0 for all k such that
dijk < Dijt . Regarding the continuous bound on x and
h, that is, constraints (19) and (20), it can be seen that
for the binary vector z, the problem decomposes into
n independent problems, one for each j. If zj = 0
for some j, then hijt = 0 for all i, t, as the problem
is in minimisation form and the coefficients in the
objective function are positive. If zj = 1, then for any
i there is some optimal solution xik, k = 1, . . . , r,
that takes values in {0, 1}. In order to see this, suppose
that we have a fractional solution. Then there are at
least two indices a and b such that xia and xib are
fractional. For pair (i, j), if dija = dijb, then centres
a and b are at the same distance from i. It follows that
the fractional solution can be turned into an integer
solution without affecting the value of the objective
function (for example, by doing xia = 1 and xib = 0).
If dija < dijb, then let Dijw = dija < Dijq = dijb for
some w and q. In order to simplify the writing of the
proof, we assume without loss of generality that for
unit i and variable j there is no allocation at a distance
smaller than Dijw and that a and b are the only cluster
centres at exactly distances dija and dijb, respectively.
From constraints (16) and (18), it follows that hijt = 1
if t ≤ w, hijt = 1 − xia if w < t ≤ q, and that
hijt = 1 − xia − xib if t > q. If we substitute these
h values in the objective function, then we obtain the
valueDijw+(Dij,q+1−Dijw)(1−xia)−(Dij, q+1−Dijq)xib.
This value can be reduced by reducing xib to zero and
by increasing xia by the same amount.

2.3. Heuristic methods for variable selection

There are applications in which the q-variable selection
problem needs to be solved several times (for example,
when different values of q are tested). However, the
NP-completeness theorem implies that computational
time increases exponentially with data size. This means
that the problem can only be solved within a reasonable
time for instances of a limited size. The largest instances
must be solved with heuristic algorithms. To develop
these algorithms, it can be observed that the complexity
of the problem derives from the fact that optimal vari-
ables z and optimal assignments x need to be calculated
simultaneously, but that, if solved separately, then both
of them are polynomially solvable problems.
Theorem 3: If x∗ is a feasible assignment solution for
problemP1, then the optimal solution forminz,w f (z, x∗, w)

can be calculated in polynomial time. Moreover, there
is an optimal solution for which z and w have binary
values.
Proof: For a feasible assignment solution x∗, let k(i)
be the cluster centre k for which x∗

i, k(i) = 1. Then
problem P1 reduces to the following problem:

min
n∑

i=1

⎛
⎝

m∑
j=1

di, j, k(i)wi, j, k(i)

⎞
⎠ (22)

s.t.
m∑
j=1

wi, j, k(i) = q ∀i/xi,k(i) = 1, (23)

wi, j, k(i) ≤ zj ∀ i, ∀j, (24)
m∑
j=1

zj = q, (25)

0 ≤ wi, j, k(i) ≤ 1 ∀ i, ∀j, (26)
0 ≤ zj ≤ 1 ∀j. (27)

Due to (23) and (25), every constraint (24) is satis-
fied as an equality as can be seen by summing both
sides over j: q = ∑m

j=1 wi, j, k(i) ≤ ∑m
j=1 zj = q. Using

this property, the objective function can be written
as

∑m
j=1

(∑n
i=1 di, j, k(i)

)
zj, which depends only on the

cardinality constraint (25) and vector z. It can be shown
that there is always a solution for which z takes integer
values. Let bj = ∑n

i=1 di, j, k(i) be the total distance from
units to centres using variables j. Then rank values bj
in increasing order: bj(1) ≤ bj(2) ≤ · · · ≤ bj(m). If we
now choose zj(t) = 1 for t = 1, . . . , q, then we have
an optimal solution. Finally, for integer values of z and
x, there is a solution w with integer values because (24)
holds as an equality. �

If the vector of variables z is fixed, then distances
(i, k) are easily calculated to find the optimal assign-
ments of unit i to the closest cluster centre k. If the
vector of assignments x is fixed, then the optimal vari-
ables z are calculated using the distance ranking, as
shown in the proof of Theorem 3. This observation
suggests that a heuristic procedure can alternate be-
tween the two subroutines: Start with some fixed z;
find the corresponding optimal assignment x. Then,
calculate the optimal z for that given x, and repeat until
the solution does not improve any more. We use the
notation DQ(X) to denote the value of the objective
function when Q is fixed (subroutine input) and X is
the decision variable (subroutine output); the notation
DX(Q) is defined similarly. Here are the details of these
two subroutines:

Subroutine Best-Assignment:

• Input: The set Q ⊆ V .
• Output: The assignment matrix X and the value
of the objective function DQ(X).

• Step 1: For all i ∈ U , k ∈ R, let cik = ∑
j∈Q dijk,
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• Step2: For all i ∈ U , letxiw = 1 if ciw = min{cik|1 ≤
k ≤ r}; xiw = 0 otherwise.

• Step 3: Let DQ(X) = ∑
i∈U

∑
k∈R cikxik.

The next subroutine calculates an optimal variable set
Q for a given allocation to clusters X.

Subroutine Best-Variables:

• Input: The assignments matrix X.
• Output: The variables Q ⊆ V , objective function
CX(Q).

• Step 1: For all j ∈ V , let bj = ∑
i, k dijkxik.

• Step 2: Rank bj in increasing order: bj(1) ≤ · · · ≤
bj(m).

• Step 3: Let j(i) ∈ Q if, and only if, i ≤ q.
• Step 4: Let CX(Q) = ∑q

i=1 bj(i).

The two subroutines (and Theorem 3) show that there
is a decomposition principle at work here. The vari-
able selection problem is NP-complete because one
has to decide concurrently which variables to select
and to which cluster assign the units to. But if we
separate the two decisions, then we obtain two poly-
nomially solvable problems. Using subroutines Best-
Assignments and Best-Variables one can start with a
tentative variable set Q0 and calculate the correspond-
ing best assignmentX0 using subroutine Best-Variable.
Then, for the assignment X0, one calculates the op-
timal variables Q1 using subroutine Best-Variable. If
Q1 �= Q0, then a new assignment X1 is calculated until,
for some t, one has that Qt = Qt−1. In this case, we
say that the algorithm converged. There is always con-
vergence because, as shown in Theorem 3, all subrou-
tines calculate optimal values, so that a non-increasing
sequence of objective values is obtained: DX(Q0) ≥
DQ(X0) ≥ DX(Q1) ≥ · · · ≥ DX(Qt−1) = DXt (Q).
Since Q and X are discrete sets, then the sequence
converges in a finite, although potentially exponential,
number of steps. It is worth noting that this decompo-
sition principle is very similar to the one that is used by
the k-means method for clustering: k-means alternates
assignments and cluster centres until a local optimum
is reached (see Chen et al., 2004; Hartigan & Wong,
1979; MacQueen, 1967).

We take the advantage of the similarity with the k-
means and we name our variable selection algorithm
q-vars. It starts with a random selection of variables
and then optimal assignments and variables are calcu-
lated alternately. When a local optimum is found, the
procedure is repeated with a new random selection of
variables, Random Restart, as it is common practice
in the standard implementations of the k-means algo-
rithm found in the literature.

The q-vars Algorithm:

• Initialisation: Objective function Cbest = +∞,
variables Qbest = ∅, random start counter s = 1,
maximum number of random start: smax = M.

• Step 1: Random Start: Select randomly a set of
variables Q0 and let t := 0.

• Repeat until a local optimum is found, that is,
CQt (Xt) = CXt (Qt+1).

– Step 2: (Unit Allocation) For given Qt , call
Best-Assignments to calculate optimal Xt

and CQt (Xt).
– Step 3: (Variable Selection) For given Xt ,
call Best-Variables to calculate optimalQt+1

and CXt (Qt+1) and update t := t + 1.

• Step 4: Cbest = min{Cbest, CQt (Xt)}, update Qbest

accordingly.
• Step 5: s = s + 1. If s ≤ smax, then return to Step
1.

The next method is called Add-and-Drop, as it seeks
the optimal solution by adding and removing vari-
ables from an incumbent set. It starts with a solution
set Q ⊆ V . Then, if the objective function decreases,
a new variable from V − Q is added to Q and one
variable is removed from Q. The process is repeated
until no further improvement is found, that is, until
a local optimum, say Qt , is reached. Add-and-Drop,
has been successfully applied to the p-median problem
(see Mladenovic, Brimberg, Hansen, & Moreno-Pérez,
2007) and it is described next:

The Add-and-Drop Algorithm

• Initialisation: Dbest = D(Q0) = +∞, Qbest =
Q0 = ∅, random start counter s = 1, maximum
number of random start: smax = M.

• Step 1, (Random Start): Select randomly a set of
variables Q1 and let t := 1.

• Repeat until D(Qt) = D(Qt−1):
◦ Step 2: (Add) Calculate D(Qt ∪ {i∗}) =
mini/∈Qt D(Qt ∪ {i}).

◦ Step 3: (Drop) CalculateD(Qt ∪{i∗}− {j∗}) =
minj/∈Qt ;j �=i∗ D(Qt∪{i∗}−{j})).UpdateQt+1 =
Qt ∪ {i∗} − {j∗} and t := t + 1.

• Step 4: Dbest = min{Dbest, DQt (Xt)}, update Qbest

accordingly.
• Step 5: s = s + 1; if s ≤ smax return to Step 1.

2.4. Computational tests

Here, we compare the two MILP formulations and the
two heuristic methods. The best of the four methods
will be used in Section 3 in a large-scale simulation in
which variable selection is used in conjunction with
clustering. The experiments of this subsection are in-
spired by the ones reported in Tadesse et al. (2005),
Fraiman et al. (2008) and Law et al. (2004).

In the tables that report the experiments, the nota-
tion n × r × m stands for the size of the input matrix.
Tests regarding the comparison of MILP formulations
are coded using CPLEX 12.6 (Concert Library) and run
on an Intel Core i5-3470, double core (3.20 GHz each)
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with 8 GB RAM and Windows 64 bits. Tests regarding
the comparison of heuristic methods are coded in Vi-
sual C++ 2010 and run on an Intel Pentium Dual CPU
T3400 (2.16 GHz), 3 GB RAM.

The first experiment replicates the test carried out in
Tadesse et al. (2005) and Fraiman et al. (2008) to val-
idate algorithms for masking variables detection. Ran-
dom data consist of 15 statistic units partitioned into
4 groups. Groups are described by multivariate nor-
mal densities with 20 true variables. Their theoretical
distribution is:

sij = I1≤i≤4N(μ1, σ 2
1 ) + I5≤i≤7N(μ2, σ 2

2 )

+ I8≤i≤13N(μ3, σ 2
3 ) + I14≤i≤15N(μ4, σ 2

4 ),

where I· is the indicator function that takes value 1 if the
condition is met and takes value 0 otherwise. Thus, the
first four samples arise from the same first distribution,
the next three from the second distribution, and so on.
The distribution parameters are μ1 = 5, σ 2

1 = 1.5,
μ2 = 2, σ 2

2 = 0.1, μ3 = −3, σ 2
3 = 0.5, μ4 = −6, σ 2

4 =
2. Additionally, for m = 50, 100, 500, 1000, which
is also the number of binary variables in our models,
m− 20 noisy variables are added to the data, generated
with a (0 − 1)-uniform distribution. The experiment
assumes that the cluster membership is known for each
i = 1, . . . , n, therefore, the arithmetic mean is used to
establish the coordinates of the groups archetypes.

The results are reported in Table 1. A time limit
of 7200 seconds is established for solving the MILP
problems whereas the heuristic uses smax = 100. If
the time limit is reached without having obtained opti-
mality, then the best solution found so far is retained.
For all algorithms, column “fo” reports the value of
the objective function. For the heuristics, we report
the iteration in which the best solution is found in
column “ it-best” and the computational time is given
in column “time-best”. For theMILPmodels, we report
the value of the continuous relaxation at the root node
of the branch-and-bound tree (“ root LP”) and the total
needed time in column “time”.

The first conclusion is that the q-vars method is able
to calculate always the optimal objective value in very
few iterations, both when q is fixed to the true value
of 20 and when q is erroneously fixed to 10 or 40. In
comparison, the other heuristic algorithm Add-and-
Drop is much slower and it finds the optimal value
only for q is 20. Regarding the LP models, we see that
computational times are negligible, except when m ≥
500 and q = 40,with only one problemunsolvedwithin
the time limit of twohours by the radius formulation. In
many cases the value of the linear relaxation calculated
at the root node of the radius formulation P2 is the
optimal value, while for P1 it is around 8% less than
the optimum. Moreover, the computational times of
P2 are the best for low values of m, but they are more

sensitive to the problem scale than formulation P1: As
can be seen, when q = 40 and m > 500, the linear
relaxation at the root node is better in formulation P2
than in formulation P1, but the computational times
are lower for P1. Regarding the statistical ability to
recover the truemasking variables and the correct (i, k)
assignments, the optimal solution is such that the 20
true variables are always selected, or a subset of them if
q = 10. Empiric assignments are the same as the true.

The following test is analogous to the Trunk data test
mentioned inLawet al. (2004) and it is an example of di-
mensionality reduction. The goal is to test the ability of
the model to reduce the dimension of the sample when
all variables are important, but some variables are more
discriminating than others. Statistic units belong to two
groups Gk, k = 1, 2. For j = 1, . . . , m, the measure of
unit i belonging to group k is the outcome of a normal
distributionN(μkj, σkj), with σkj = 1 for all k, j, so that
units are well separated if the difference between μ1j
andμ2j is high. In order to control this feature, averages
are μ1j = 0 for all j, μ2j = 6 − 6

(
j
m

)
, so that the

most important variables are the ones with the lowest
values of j. Therefore, the groups are well separated and
become less and less distinguishable as j increases. The
rest of the parameters are n = 100, |G1| = |G2| = 50,
andm = 40, 80, 120.

Data reporting computational tests are provided in
Table 2. Again, the q-vars is faster and more accurate
than the Add-Drop heuristic. The radius formulation
P2 is better than P1. With regard to the statistic quality
of the solution, for fixed q the theoretical best solution
is zk = 1 if k ≤ q and zk = 0 otherwise. Columns
“inaccuracy” report the cardinality of the difference
between the theoretical optimal variable set and the
one calculated by the models: As can be seen, most
of the time the experimental variable set is equal to
the theoretical best set, with differences that are never
more than a few units. Since random effects in data
generation are unavoidable, it can be concluded that
themodel is very accurate in selecting themost relevant
variables.

The previous experiments are encouraging, but it is
anomalous that an NP-complete problem is solved so
easily. Next, we carry out tests where the groups are not
so well separated by generating difficult computational
instances of the problem. The following experiment
assumes surveys in which every variable j follows the
(0–1)-uniform distribution. In this unstructured data,
wrong clusters are superimposed in the formof random
group membership k(i) for units i. The other param-
eters are n = 96, r = 8 or 12, and m = 40 or 80.
In Table 3, computational results are reported. The
difficulty of this class of problems emerges because the
MILP models are never able to calculate the optimal
value within the time limit of 2 h. The reader should
observe that Table 3 does not report “time” for the
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Table 1. Computational results: variable selection with 20 true variables.

Problem name q-vars Add-Drop ILP-P1 ILP-P2
q* fo it-best time-best fo it-best time-best fo root LP time fo or best UB root LP time

MSA-A-15x4x50 20 43.89 1 0 43.89 9 0 43.89 40.95 0 43.89 43.89 0
MSA-B-15x4x50 20 41.44 1 0 41.44 9 0 41.44 38.62 0 41.44 41.44 0
MSA-C-15x4x50 20 46.14 1 0 46.14 9 0 46.14 42.22 0 46.14 46.14 0
MSA-D-15x4x50 20 45.47 1 0 45.47 9 0 45.47 42.03 0 45.47 45.47 0
MSA-E-15x4x50 20 39.61 1 0 39.61 9 0 39.61 36.59 0 39.61 39.61 0
MSA-A-15x4x100 20 43.63 2 0 43.63 17 0 43.63 39.96 0 43.63 43.63 0
MSA-B-15x4x100 20 43.61 1 0 43.61 17 0 43.61 39.72 0 43.61 43.61 0
MSA-C-15x4x100 20 40.77 1 0 40.77 17 0 40.77 38.53 0 40.77 40.77 0
MSA-D-15x4x100 20 39.57 1 0 39.57 17 0 39.57 37.46 0 39.57 39.57 0
MSA-E-15x4x100 20 46.74 2 0 46.74 17 0 46.74 43.51 0 46.74 46.74 0
MSA-A-15x4x500 20 43.38 1 0 43.38 19 0 43.38 39.38 0 43.38 43.38 0
MSA-B-15x4x500 20 47.17 2 0 47.17 19 0 47.17 44.17 0 47.17 47.17 0
MSA-C-15x4x500 20 45.05 2 0 45.05 19 0 45.05 40.91 0 45.05 45.05 0
MSA-D-15x4x500 20 43.46 2 0 43.46 19 0 43.46 39.89 0 43.46 43.46 0
MSA-E-15x4x500 20 46.60 1 0 46.60 19 0 46.60 42.14 0 46.60 46.60 0
MSA-A-15x4x1000 20 44.34 2 0 44.34 20 0 44.34 40.21 2 44.34 44.34 0
MSA-B-15x4x1000 20 42.01 2 0 42.01 20 0 42.01 38.44 1 42.01 42.01 0
MSA-C-15x4x1000 20 41.25 2 0 41.25 20 0 41.25 38.76 1 41.25 41.25 0
MSA-D-15x4x1000 20 39.41 2 0 39.41 20 0 39.41 36.82 1 39.41 39.41 0
MSA-E-15x4x1000 20 38.59 2 0 38.59 20 0 38.59 36.58 1 38.59 38.59 0
Average 20 43.11 43.11 43.11 39.85 43.11 43.11
MSA-A-15x4x50 10 18.12 1 0 21.23 547 0 18.12 17.44 0 18.12 18.12 0
MSA-B-15x4x50 10 17.18 1 0 18.05 580 0 17.18 15.77 0 17.18 17.18 0
MSA-C-15x4x50 10 18.94 1 0 20.23 1876 0 18.94 17.39 0 18.94 18.94 0
MSA-D-15x4x50 10 18.89 1 0 20.36 13 0 18.89 18.08 0 18.89 18.89 0
MSA-E-15x4x50 10 15.55 1 0 17.49 34 0 15.55 14.97 0 15.55 15.55 0
MSA-A-15x4x100 10 16.87 2 0 18.10 378 0 16.87 15.68 0 16.87 16.87 0
MSA-B-15x4x100 10 17.48 2 0 19.17 892 0 17.48 17.28 0 17.48 17.48 0
MSA-C-15x4x100 10 16.75 2 0 18.42 333 0 16.75 15.68 0 16.75 16.75 0
MSA-D-15x4x100 10 16.33 2 0 17.82 201 0 16.33 16.21 0 16.33 16.33 0
MSA-E-15x4x100 10 19.53 2 0 21.18 686 0 19.53 18.80 0 19.53 19.53 0
MSA-A-15x4x500 10 16.53 2 0 21.39 1154 0 16.53 15.85 0 16.53 16.53 0
MSA-B-15x4x500 10 19.15 2 0 21.87 994 0 19.15 18.70 0 19.15 19.15 0
MSA-C-15x4x500 10 18.16 2 0 19.94 530 0 18.16 17.12 0 18.16 18.16 0
MSA-D-15x4x500 10 17.96 2 0 20.42 226 0 17.96 16.74 0 17.96 17.96 0
MSA-E-15x4x500 10 19.69 2 0 23.35 540 0 19.69 18.25 0 19.69 19.69 0
MSA-A-15x4x1000 10 17.26 2 0 19.22 550 0 17.26 16.90 0 17.26 17.26 0
MSA-B-15x4x1000 10 18.01 2 0 19.24 765 0 18.01 16.46 1 18.01 18.01 0
MSA-C-15x4x1000 10 16.32 2 0 20.42 1010 0 16.32 15.89 0 16.32 16.32 0
MSA-D-15x4x1000 10 16.16 2 0 18.36 11 0 16.16 15.36 0 16.16 16.16 0
MSA-E-15x4x1000 10 17.08 2 0 17.98 600 0 17.08 16.29 1 17.08 17.08 0
Average 17.60 19.71 17.60 16.74 17.60 17.60
MSA-A-15x4x50 40 247.86 1 0 247.86 634 1 247.86 154.60 0 247.86 247.86 0
MSA-B-15x4x50 40 235.34 1 0 235.34 180 0 235.34 146.05 0 235.34 235.34 0
MSA-C-15x4x50 40 247.30 1 0 247.30 520 1 247.30 159.87 0 247.30 247.30 0
MSA-D-15x4x50 40 241.20 1 0 241.20 980 1 241.20 149.30 0 241.20 241.20 0
MSA-E-15x4x50 40 239.69 1 0 239.69 308 0 239.69 149.89 0 239.69 239.69 0
MSA-A-15x4x100 40 230.18 1 0 238.29 384 1 230.18 139.79 2 230.18 230.18 0
MSA-B-15x4x100 40 226.71 1 0 236.00 102 0 226.71 140.97 1 226.71 226.71 0
MSA-C-15x4x100 40 221.81 1 0 227.80 273 0 221.81 138.54 1 221.81 221.81 0
MSA-D-15x4x100 40 217.69 1 0 225.45 2773 4 217.69 135.03 1 217.69 217.69 0
MSA-E-15x4x100 40 236.60 1 0 245.25 553 1 236.60 145.58 2 236.60 236.60 0
MSA-A-15x4x500 40 185.61 1 0 226.71 164 0 185.61 118.34 7 185.61 170.83 167
MSA-B-15x4x500 40 204.59 1 0 234.22 801 1 204.59 126.77 15 204.59 176.45 964
MSA-C-15x4x500 40 189.23 1 0 228.33 706 1 189.23 124.20 9 189.23 173.99 107
MSA-D-15x4x500 40 201.97 1 0 227.99 2069 4 201.97 116.75 15 201.97 171.78 1158
MSA-E-15x4x500 40 205.43 1 0 230.80 343 1 205.43 123.63 16 205.43 177.57 772
MSA-A-15x4x1000 40 187.79 2 0 229.06 198 0 187.79 115.45 38 187.79 159.05 1904
MSA-B-15x4x1000 40 183.91 1 0 222.83 914 2 183.91 109.07 30 184.03 156.41 7200
MSA-C-15x4x1000 40 180.67 1 0 220.27 77 0 180.67 108.39 49 180.67 154.69 2867
MSA-D-15x4x1000 40 181.34 1 0 222.50 847 2 181.34 111.17 48 181.34 153.37 4797
MSA-E-15x4x1000 40 173.76 1 0 219.92 186 0 173.76 11.82 21 173.76 153.49 988
Average 211.93 232.34 211.93 126.26 211.94 199.60

MILP models (P1 and P2) since in all instances they
required computational times larger that 7200 seconds
and, even so, they were unable to find the optimal so-
lution. Regarding heuristics, computational times and
number of iterations increase considerably. The deduc-
tion from these findings is that the data of the problem
affect the reliability of the algorithms. It is very likely

that there are real applications, e.g. applications with
overlapping groups or with high values of m, r, n, in
whichone cannotuse theMILPmodels because they are
not efficient (i.e. they cannot solve the problem within
a reasonable time). For those cases, the heuristic q-vars
should be used.
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Table 2. Computational results: application to dimension reduction.

q-vars Add-Drop ILP-P1 ILP-P2
Problem name q fo opt-it time-opt accuracy fo opt-it time-opt accuracy fo root LP time fo root LP time

PRV-A-100x2x40 10 119.14 1 0 3 119.78 133 0 2 119.14 117.79 0 119.14 119.14 0
PRV-B-100x2x40 10 130.29 1 0 2 130.29 569 0 2 130.29 126.00 0 130.29 130.29 0
PRV-C-100x2x40 10 128.01 1 0 0 128.01 6 0 0 128.01 124.37 0 128.01 128.01 0
PRV-D-100x2x40 10 121.92 1 0 1 121.92 7 0 1 121.92 118.84 0 121.92 121.92 0
PRV-E-100x2x40 10 120.67 1 0 0 120.67 6 0 0 120.67 120.48 0 120.67 120.67 0
PRV-A-100x2x40 20 357.23 1 0 1 357.23 11 0 1 357.23 324.51 0 357.23 357.23 0
PRV-B-100x2x40 20 345.93 1 0 1 345.93 11 0 1 345.93 325.88 0 345.93 345.93 0
PRV-C-100x2x40 20 352.89 1 0 1 352.89 88 0 1 352.89 322.01 0 352.89 352.89 0
PRV-D-100x2x40 20 334.82 1 0 1 334.82 11 0 1 334.82 308.16 0 334.82 334.82 0
PRV-E-100x2x40 20 357.06 1 0 0 357.06 11 0 0 357.06 331.69 0 357.06 357.06 0
PRV-A-100x2x40 30 827.52 1 0 2 827.52 25 0 2 827.52 641.14 1 827.52 827.52 0
PRV-B-100x2x40 30 782.85 1 0 0 782.85 7 0 0 782.85 637.04 1 782.85 782.85 0
PRV-C-100x2x40 30 799.33 1 0 0 799.33 7 0 0 799.33 628.64 1 799.33 799.33 0
PRV-D-100x2x40 30 787.40 1 0 0 787.40 7 0 0 787.40 624.59 1 787.40 787.40 0
PRV-E-100x2x40 30 818.74 1 0 0 818.74 7 0 0 818.74 643.29 1 818.74 818.74 0
Average 425.59 425.63 425.59 359.63 425.59 425.59
PRV-A-100x2x80 20 263.31 1 0 2 263.71 80 0 1 263.31 257.02 0 263.31 263.31 0
PRV-B-100x2x80 20 266.87 1 0 1 266.87 168 0 1 266.87 260.95 0 266.87 266.87 0
PRV-C-100x2x80 20 255.95 1 0 2 255.95 14 0 2 255.95 252.64 0 255.95 255.95 0
PRV-D-100x2x80 20 263.48 1 0 2 263.48 216 0 2 263.48 256.38 0 263.48 263.48 0
PRV-E-100x2x80 20 245.06 1 0 2 246.80 34 0 1 245.06 239.28 0 245.06 245.06 0
PRV-A-100x2x80 40 727.85 1 0 1 727.85 24 0 1 727.85 665.12 1 727.85 727.85 0
PRV-B-100x2x80 40 719.68 1 0 2 719.68 92 1 2 719.68 666.79 1 719.68 719.68 0
PRV-C-100x2x80 40 729.66 1 0 1 729.66 23 0 1 729.66 676.67 1 729.66 729.66 0
PRV-D-100x2x80 40 726.86 1 0 1 726.86 129 1 1 726.86 652.20 1 726.86 726.86 0
PRV-E-100x2x80 40 690.03 1 0 1 690.03 128 1 1 690.03 634.69 0 690.03 690.03 0
PRV-A-100x2x80 60 1694.27 1 0 1 1694.27 279 4 1 1694.27 1311.62 5 1694.27 1694.27 0
PRV-B-100x2x80 60 1627.80 1 0 1 1627.80 15 0 1 1627.80 1297.12 5 1627.80 1627.80 0
PRV-C-100x2x80 60 1654.34 1 0 0 1654.34 15 0 0 1654.34 1319.34 4 1654.34 1654.34 0
PRV-D-100x2x80 60 1635.18 1 0 0 1635.18 15 0 0 1635.18 1289.34 4 1635.18 1635.18 0
PRV-E-100x2x80 60 1621.49 1 0 2 1621.49 31 0 2 1621.49 1279.15 9 1621.49 1621.49 0
Average 874.79 874.93 874.79 737.22 874.79 874.79
PRV-A-100x2x120 30 390.01 1 0 4 391.07 471 2 3 390.01 381.819 0 390.01 390.01 0
PRV-B-100x2x120 30 386.92 1 0 5 388.78 1556 5 4 386.92 377.796 1 386.92 386.92 0
PRV-C-100x2x120 30 386.30 1 0 3 386.30 371 2 3 386.30 380.574 1 386.30 386.30 0
PRV-D-100x2x120 30 376.49 1 0 2 376.49 375 1 2 376.49 369.607 0 376.49 376.49 0
PRV-E-100x2x120 30 370.08 1 0 4 374.20 841 3 2 370.08 362.519 0 370.08 370.08 0
PRV-A-100x2x120 60 1040.36 1 0 3 1040.36 215 3 3 1040.36 970.97 1 1040.36 1040.36 0
PRV-B-100x2x120 60 1046.18 1 0 0 1046.18 26 0 0 1046.18 970.81 1 1046.18 1046.18 0
PRV-C-100x2x120 60 1085.35 1 0 2 1087.07 357 5 2 1085.35 990.176 1 1085.35 1085.35 0
PRV-D-100x2x120 60 1067.89 1 0 1 1070.13 206 3 2 1067.89 989.424 2 1067.89 1067.89 0
PRV-E-100x2x120 60 1025.97 1 0 1 1025.97 26 0 1 1025.97 964.7 1 1025.97 1025.97 0
PRV-A-100x2x120 90 2391.07 1 0 2 2391.07 19 1 2 2391.07 1904.8 11 2391.07 2391.07 0
PRV-B-100x2x120 90 2366.39 1 0 1 2366.39 44 1 1 2366.39 1888.17 6 2366.39 2366.39 0
PRV-C-100x2x120 90 2469.22 1 0 3 2469.22 19 1 3 2469.22 1941.87 12 2469.22 2469.22 0
PRV-D-100x2x120 90 2451.00 1 0 2 2451.00 240 8 2 2451.00 1929.39 11 2451.00 2451.00 0
PRV-E-100x2x120 90 2340.39 1 0 1 2340.39 20 6 1 2340.39 1886.16 10 2340.39 2340.39 0
Average 1279.57 1280.31 1279.57 1087.25 1279.57 1279.57

Table 3. Computational results: variable selection to data with no structure.

q-vars Add-Drop ILP-P1 ILP-P2

Problem name q fo opt-it time-opt fo opt-it time-opt obj/best UB root LP obj/best UB root LP
WRN-A-96x8x80 10 691.39 8821 2 730.58 2163 3 880.17 296.30 750.05 422.52
WRN-A-96x8x80 20 1548.05 24855 8 1613.55 551 2 1864.00 667.76 1669.25 1010.08
WRN-A-96x8x80 30 2435.64 10049 4 2513.95 318 3 2833.99 1078.13 2530.08 1740.70
WRN-A-96x8x80 40 3339.65 300 0 3414.16 54 1 3711.39 1522.24 3428.77 2599.22
WRN-B-96x12x40 10 669.73 16155 3 682.28 895 2 887.27 201.66 709.95 389.37
WRN-B-96x12x40 20 1532.12 3918 1 1558.96 259 2 1894.40 472.27 1545.83 1112.21
WRN-B-96x12x40 30 2435.38 4197 2 2443.20 1374 19 2963.43 788.62 2417.24 2144.23
Average 1807.42 1850.95 2147.81 718.14 1864.45 1345.48

As a conclusion, these tests suggest that q-vars is the
most appropriate algorithm for the next simulations
because:

• It is fast and performs better than the other heuris-
tic Add-and-Drop.

• Most of the time, it calculates the optimal solution
in just a few iterations (if compared with MILP
solutions).

• There are problem instances in whichMILPmod-
els are unable to find the optimal solution.
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3. Clustering with variable selection

The main application of variable selection is clustering.
In a broad view, themethodology to select variables and
clusters is composed of three steps (see, for example,
Steinley & Brusco, 2008a):

• Step 1: Standardise the data and run a clustering
algorithm to estimate the cluster centres R.

• Step 2: Solve the variable selection problem to
select the optimal set of variables Q.

• Step 3: Apply the clustering algorithm to the data-
set in which only the selected variables Q are re-
tained.

In Step 1, the data standardisation can be worked out
in at least two ways. The most common approach is
to apply the z-score so that all variables have vari-
ance equal to one. The second approach, proposed in
Steinley and Brusco (2008a), is to modify the z-score
using a correction factor, specific to each variable, with
the purpose of preserving the so-called “clusterabil-
ity index” of that variable. Here the method will be
called c-score standardisation (to distinguish it from z-
score). Details about its implementations are available
in Steinley and Brusco (2008b) and Steinley and Brusco
(2008a).

The variable selection problem (Step 2) is solved
with the q-vars procedure (with parameter reduced to
smax = 40). The choice of q-vars heuristic is dictated
by the fact that in real applications q is an unknown
parameter. The subroutinemust run for different values
of q before selecting the best one and therefore it is
important to reduce its computational time, even at the
cost of sacrificing the accuracy of the results.

The k-means and the Expectation–Maximisation
(EM) algorithms are the most popular methods for
clustering and they were also used in previous exper-
iments in variable selection (see Andrews & McNi-
cholas, 2014; Raftery & Dean, 2006; Steinley & Brusco,
2008a). Therefore, Steps 1 and 3 are experimented using
these two alternatives. The k-means algorithm is the
most popular clustering method in the literature by far,
available in all packages and used in the experiments
in Steinley and Brusco (2008a). Moreover, it does not
assume that data should conform to any hypothesis.
Conversely, the EM algorithm assumes that data are
outcomes from a multivariate probability distribution
which is themixture of k components, each component
describing one of the clusters (this is the reason why
the method is called model-based clustering). The EM
algorithm calculates the maximum of the likelihood
function to estimate both cluster centres and cluster
memberships (see McLachlan & Krishnan, 1997). The
method can include the variable selection problem in
the formof binary decisions (see Raftery&Dean, 2006),
and it is used as the benchmark model in Andrews and
McNicholas (2014).

Now we describe how to guess the exact number q∗
of the relevant variables. The first method, proposed
in Steinley and Brusco (2008a), decomposes the total
variability of a data partition P into two terms, the
within-groups and the between-groups variability and
calculates an index called VAF(P, q). This index de-
pends on the input value of q and on the partition P
obtained by the clustering algorithm, but the specific
number q∗ is determined by comparing the slope of
the function VAF(P, q) for different q. The second ap-
proach, proposed in Andrews and McNicholas (2014),
takes advantage of the property that the EM algorithm
outputs clustermemberships as probabilities, which are
used to calculate an index of clustering uncertainty,
called UNC(P, q). Then, the value of q∗ is guessed
as the minimum of UNC(P, q). In our experiments,
the choice of which index to use is solved by con-
sidering the structure of the clustering algorithm. The
mathematics of the k-means algorithm, with its sum of
squares minimisation, is based on variability decom-
position and thus VAF(P, q) seems the appropriate
choice. Conversely, if one is using the EM-algorithm,
then its outcomes aremembership probabilities, so that
the choice of UNC(P, q) is reasonable.

Following the discussion above, tests have been car-
ried out with the following combinations of data stan-
dardisation and clustering algorithms:

• qv-1: z-score standardisation, k-means algorithm,
VAF(P, q) used to guess q∗.

• qv-2: z-score standardisation, EM algorithm,
UNC(P, q) used to guess q∗.

• qv-3: c-score standardisation, k-means algorithm,
VAF(P, q) used to guess q∗.

• qv-4: c-score standardisation, EM algorithm,
UNC(P, q) used to guess q∗.

3.1. The benchmark algorithms

Theqvmethods are compared to three benchmark algo-
rithms: The method described in Steinley and Brusco
(2008a), which is a constructive algorithm using the
clusterability index (denoted here sb-red), the polyno-
mial reduction described in Andrews and McNicholas
(2014) (called here am-pol) and the model-based vari-
able selection proposed in Raftery and Dean (2006)
(called here cvs).

sb-red is a constructive heuristic composed of var-
ious steps. First, the pre-processing step screens vari-
ables using the clusterability index and retains only a
subset of them. Then the remaining variables are stan-
dardised using the c-score. To determine the relevant
variables, the method uses a combination of complete
enumeration and greedy search. It enumerates all vari-
able subsets with cardinality less than or equal to l (a
parameter fixed by the user) and calculates optimal
clustering with the k-means algorithm. This is the way
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in which VAF(P, q) is calculated for q ≤ l. For q > l,
variables are inserted to subsets one at a time in a greedy
fashion. The clusterability index is computed fast, but
complete enumeration is practical onlywhen l is a small
number.When themethod switches to the constructive
greedy, it looses precision, so that it is likely that the
algorithm works well only when q∗ is small. In our
simulations, the algorithm is coded as an R script and
runs with l = 3.

The am-pol method is a greedy constructive pro-
cedure that selects the relevant features one at time
using an index of within-cluster variability. The index
is then modified using a non-linear factor to discard
correlated features. Optimal clusters and parameter q∗
are determined by the EM algorithm and UNC(P, q).
The method is fast, but it depends on contingent rules
to determine parameters, to select variables and to fit
models; the dependency of these rules on the data at
hand is an unexplored issue. The algorithm that we
used is the one coded in the R package (Andrews &
McNicholas 2013).

The cvs method is a model-based clustering tech-
nique that implements the EM algorithm on data that
are assumed to be multivariate normal. Different vari-
able sets are tested by inserting or deleting one variable
from an incumbent set. The advantage of the model
is that it estimates a full range of parameters: means,
variances, covariances and memberships. The draw-
back is that the EM algorithm must run in every in-
sertion/deletion step, which means that computational
times are prohibitive for large data-sets. The algorithm
that we used is available in the R package (Scrucca,
Adrian, & Raftery, 2013).

3.2. Description of the test problems

The most accurate comparison of variable selection
methods to date has been carried out in Steinley and
Brusco (2008a). In that paper, data are simulated as-
suming clusters with multivariate Gaussian distribu-
tions and different shapes of masking variables. The
experiments controlled for eight factors, including the
size and the number of clusters and the probability of
clusters overlapping. It was found that clustering results
are mainly affected by three factors: The probability
distribution of the masking variables, the probability
of clusters overlap and the ratio between relevant and
masking variables. Therefore, our tests controlled for
just these three factors.

The relevant variables are simulated using the pro-
cedure described in Qiu and Joe (2006) and available
as the R subroutine genRandCluster in the R package
(Qiu & Joe 2013). All simulations assume four clusters
of equal size, each with 62 units for a total of 248 units
(250 units were used in Steinley & Brusco, 2008a). All
experiments assume that there is only oneway to cluster
the data, as they do not consider the problematic case

in which data can be clustered in more than one way,
depending on which subset of features is selected. To
deal with this problem, one has to be careful when
selecting the cluster centres R that are used as input
of the q-var heuristic. Moreover, one should design
consistent methods for determining which alternative
clusters are best: one solution is to resort to the ob-
jective function value, as it is done in the selection and
clusteringmodel proposed in Benati andGarcía (2014).
But the presence of alternative clustering structures is a
peculiar and difficult problem that is not addressed in
the experiments done so far.

Masking variables are simulated using four scenar-
ios:

• Themasking variables are all independentnormal.
• The masking variables are normal, with means 0
and covariance matrix with diagonal terms equal
to 1 and off-diagonal terms equal to 0.5.

• The masking variables are (0, 1)-uniform distri-
butions.

• The masking variables are gamma distributions
with location and scale parameters both
equal to 1.

All scenarios except the third one were previously con-
sidered in Steinley and Brusco (2008a). The first and
second scenarios take the clustering problems to the
Gaussian setting, so that data fulfil the assumptions
for using the EM algorithm. The third scenario, new
to this simulation, has been considered to control the
effect of symmetric but non-Gaussian random vari-
ables. The fourth scenario considers asymmetric mask-
ing variables. Regarding the second factor affecting the
scenarios, the probability of clusters overlapping has
been controlled by the sep parameter of the subroutine
genRandCluster. The sep parameter has been set to
0.20, 0.01, and−0.10 corresponding to increasingprob-
abilities of overlap. The third factor is the ratio between
relevant and masking variables. We define nR as the
number of relevant variables and nM as the number
of masking variables. Simulations are run with nR =
6, 12, and nM = nR, 2nR.

There is a total of 4 × 3 × 4 = 48 parameters com-
binations. For each combination, 10 random data-sets
are generated. The largest problem is an application to
data-sets with 248 rows and 36 columns, which cannot
be considered a large data-set in the actual statistics
literature. Still, it is the largest problem that the EM
algorithm can solve. Finally, all clustering algorithms
are run with k = 4, that is, the true number of clusters
is assumed to be known, as the experiments are mainly
focused on variable selection.
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3.3. Performancemeasures

In Steinley and Brusco (2008a), the performance of
the selection/clustering algorithms ismeasured in three
different ways:

Cluster Recovery: The true recovery is measured by
the ARI, an index which is 1 when there is a perfect
recovery of the cluster structure, but which is close to 0
when the cluster recovery is equal to the random choice
of cluster assignment (ARI can indeed be negative). The
formula of the ARI can be found in Hubert and Arabie
(1985), and is available in theRpackage (Fraley, Raftery,
Brendan Murphy, & Scrucca, 2012). ARI is claimed in
Steinley and Brusco (2008a) to be the most important
index to assess the quality of an algorithm.

Precision:The precision is measured by the number
of relevant variables that are contained in the selected
subset divided by the cardinality of the selected subset.
A precision value equal to 1 means that all the selected
variables are relevant, 0 means that the selected vari-
ables are all masking.

Recall: The recall is measured by the number of
relevant variables of the selected subset divided by the
total number of the relevant variables. A value of 1
means that all the relevant variables are selected, 0
means that no relevant variable was selected.

While a high value of both precision and recall is
always preferred, it is also true that the two measures
must be considered together. For example, suppose that
there are 6 relevant variables and 6 masking variables,
a method that trivially selects all 12 variables would
result in a precision of 1 but a recall of 0.5. It can hardly
be considered better than a method with precision and
recall both equal to 0.75.

3.4. Computational results

The test results are reported in Table 4. Due to numer-
ical instability, the cvs algorithm could not calculate
the outcome of 33 problems, so these problems were
excluded from the computation of the means for that
method. Regarding the clustering ability of the algo-
rithms, the best ARIs are obtained by the two q-vars al-
gorithms using the z-score standardisation. First comes
qv-2, which uses the EM clustering algorithm, and a
close second is qv-1, whichuses the k-means. Since clus-
ters are simulated as multivariate normal distributions,
it may happen that EM clustering is more efficient than
k-means and its ARI is better. Regarding the variables
selection, it has been found that usually high precision
comes with low recall and vice versa. This means that
if relevant variables are selected with high probability
(the property of high precision), then it is also likely
that some of the relevant variables are discarded (the
property of low recall). In fact, the method with the
best precision is sb-red, for which on average 70% of
the selected variables are relevant. However, sb-red is

the method with the worst recall, as on average only
20% of the relevant variables are retrieved. Conversely,
the method with the best recall is am-pol, however it is
also the method with the worst precision. As discussed
previously, there is a trade-off between precision and
recall and in our tests all the q-vars methods obtain in-
termediate values of precision and recall. Remarkably,
both values are above the threshold of 0.5, whichmeans
that at least half of the relevant variables are selected (re-
call > 0.5) and that at least half of the selected variables
are relevant (precision > 0.5).

Tables 5 and 6 report data on ARI, precision and
recall for the different structures of the masking vari-
ables. Regarding the ARI, when data are normal the
cvs algorithm is the best, even in the difficult case in
which the masking variables come from an elliptic dis-
tribution with correlation 0.5. Here all other methods
fail to discover the true features, mistaking the elliptic
masking multivariate distribution for regular clusters.
But cvs does not work well when masking features are
not normal. For example, it fails if themasking variables
follow a gamma distribution. The explanation of this
behaviour is that the cvs method assumes multivariate
Gaussian data and it is indeed very good when data are
normal. But the algorithm performs much worse when
data are not normal, so it is highly dependent on the
application. Themethods based on the k-means are less
sensitive to the normality assumption, as can be seen
in the data for the gamma distribution. Moreover, the
cvsmethod selects all relevant variables, but many true
variables are discarded, as shown from the precision of
1 and the recall of 0.48. The precision and the recall of
qv-1 are good too, as both are greater than 0.75, thus
showing that only one out of four relevant variables
is left out of the selected set and only one out of four
selected variables is masking.

Tables 7 and 8 report data conditional to the degree
of separation between clusters. When clusters are well
separated (see the results for high separation), cluster-
ing is easier and all algorithms achieve satisfactory ARI
results. But when the separation is medium or low, the
qv-1 algorithm provides the best value of ARI. The rea-
son is that Gaussian clusters are easy to recognise when
well separated but hard to recognise when the clusters
overlap. That is, the maximum likelihood estimation
becomes more difficult. Conversely, methods based on
k-means are more effective. Regarding precision and
recall, the results of the qv-1method are always greater
than 0.5, as opposed to the results of the cvs, which
provides poor numbers when clusters are not well sep-
arated.

Tables 9 and 10 report data conditional to the ratio
between masking and true variables. When the ratio is
1, the best method is qv-2, but when the ratio is 3 the
best method is qv-1. The explanation is that too many
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Table 4. Global results of the selection/clustering algorithms.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

ARI 0.541 0.568 0.349 0.517 0.386 0.480 0.463
precision 0.607 0.523 0.557 0.498 0.705 0.551 0.573
recall 0.596 0.737 0.627 0.774 0.228 0.868 0.280

Table 5. Average ARI on different contaminating distributions.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

N(0, 1) 0.730 0.774 0.586 0.651 0.481 0.630 0.783
Ncor0.5 0.055 0.330 0.190 0.321 0.454 0.328 0.783
Unif01 0.689 0.705 0.175 0.768 0.166 0.585 0.346

Gamma11 0.688 0.462 0.447 0.328 0.442 0.374 0.008

Table 6. Average precision and recall on different contaminating distributions.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

N(0, 1)-Prec 0.799 0.619 0.663 0.515 0.832 0.628 1.000
Recall 0.752 0.859 0.685 0.831 0.233 0.921 0.477
Ncor0.5-Prec 0.072 0.304 0.302 0.367 0.797 0.419 1.000
Recall 0.092 0.490 0.347 0.608 0.218 0.799 0.477
Unif01-Prec 0.791 0.621 0.814 0.710 0.419 0.649 0.371
Recall 0.760 0.803 0.906 0.960 0.240 0.889 0.203
Gamma11-Prec 0.767 0.547 0.449 0.400 0.771 0.508 0.008
Recall 0.782 0.795 0.572 0.698 0.220 0.865 0.006

Table 7. Average ARI on degrees of separation between clusters.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

High 0.735 0.835 0.499 0.731 0.702 0.705 0.719
Medium 0.535 0.521 0.281 0.483 0.253 0.420 0.397
Low 0.352 0.348 0.269 0.338 0.202 0.314 0.233

Table 8. Average precision and recall on degrees of separation between clusters.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

HighSep-Prec 0.645 0.584 0.579 0.516 0.903 0.642 0.742
Recall 0.615 0.812 0.645 0.814 0.322 0.888 0.413
MediumSep-Prec 0.619 0.508 0.541 0.480 0.665 0.525 0.551
Recall 0.573 0.727 0.598 0.780 0.195 0.880 0.246
LowSep-Prec 0.559 0.476 0.552 0.498 0.546 0.486 0.394
Recall 0.601 0.672 0.639 0.730 0.166 0.838 0.162

Table 9. Average ARI on ratio of relevant, masking variables.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

#mask = #true 0.571 0.696 0.443 0.669 0.427 0.663 0.486
#mask = 2(#true) 0.510 0.439 0.256 0.365 0.345 0.296 0.438

Table 10. Average precision and recall on ratio of relevant,masking variables.

qv1 qv2 qv3 qv4 sb-red am-pol cvs

#mask = #true-prec 0.736 0.669 0.665 0.615 0.783 0.664 0.580
recall 0.531 0.859 0.681 0.928 0.238 0.842 0.286
#mask = 2(#true)-prec 0.479 0.377 0.449 0.381 0.627 0.439 0.565
recall 0.662 0.615 0.574 0.620 0.217 0.895 0.274

noising data hinder the EM algorithm, something that
does not affect k-means based methods.

As a conclusion, the tests show that nomethod is the
best overall scenarios, but that successful application
depends on the data at hand. However, it is important

to note that when data aremore difficult to analyse, that
is,when they arenot normal, overlap, and containmany
masking variables, then the qv-1method performs bet-
ter. This conclusion is strengthened when looking at
the computational times reported in
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Table 11. Computation time in seconds (averages) of the seven algorithms.

#relevant #masking qv1 qv2 qv3 qv4 sb-red am-pol cvs

6 6 0.63 3.98 0.62 4.25 0.04 0.73 7.93
6 12 1.18 9.03 1.10 7.58 0.19 1.08 10.87
12 12 1.96 14.72 1.81 13.44 0.18 1.68 15.61
12 24 3.73 28.46 3.62 29.98 0.19 2.98 23.69

Table 11. The qv-1 algorithm is one of the fastest
methods. It is able to handle the large size data that the
EM algorithm is unable to cope with. For these reasons,
the combination q-vars/k-means is the tool that we
suggest for data analysis. Some algorithms tested in this
paper is available in the R/CRAN package “qVarSel”.

4. Conclusions

The problem of selecting relevant variables for clus-
tering has been formulated as a combinatorial optimi-
sation model in this paper. The model is solved with
integer linear programming or heuristic methods to
determine the best variable selection subroutine for
a clustering application. Extensive tests on simulated
data provided evidence that the approach can deter-
mine the relevant features and improve the clustering
quality. Future research can be devoted to improve
some computational issues of the problem. For exam-
ple, the radius formulation is a methodology that has a
strong connectionwith the pseudo-boolean representa-
tion of the objective function (see AlBdaiwi et al., 2011;
Church, 2003;Church, 2008). In thisway, one can refine
the MILP formulation using even less coefficients and
constraints, as proved and experimented in a similar
problem inGoldengorin andKrushinsky (2011).More-
over, the problem of selecting relevant features is not
only important in clustering, but also in other statistical
techniques such as classification or supervised learning
(see Guyon & Elisseef, 2003; Yang & Olafsson, 2009),
support vector machines (see Maldonado, Pérez, We-
ber, & Labbé 2014), and linear regression (see Hoking,
1976). It is likely that the methods developed here can
be modified to fit these relevant applications. Another
applicationwouldbe to consider the geographical inter-
pretation of themodel and insert distance selection into
the p-median problem (see Mladenovic et al., 2007).
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